study
LeetCode#1140
Date: 2024-08-20 02:58
Update: 2024-08-26 14:25
Level : Medium
Alice and Bob continue their games with piles of stones. There are a number of piles arranged in a row, and each pile has a positive integer number of stones piles[i]
. The objective of the game is to end with the most stones.
Alice and Bob take turns, with Alice starting first. Initially, M = 1
.
On each player’s turn, that player can take all the stones in the first X
remaining piles, where 1 <= X <= 2M
. Then, we set M = max(M, X)
.
The game continues until all the stones have been taken.
Assuming Alice and Bob play optimally, return the maximum number of stones Alice can get.
class Solution {
private:
int helper(int i, int M, vector<int>& piles, vector<vector<int>>& dp, vector<int>& suffixSum) {
int n = piles.size();
// Base case: If we're at the last pile, return the sum of the remaining piles
if (i >= n) {
return 0;
}
// If we've already calculated this state, return the stored value
if (dp[i][M] != -1) {
return dp[i][M];
}
int maxStones = 0;
// Try taking all possible X (1 <= X <= 2 * M)
for (int X = 1; X <= 2 * M; ++X) {
if (i + X > n) {
break; // Don't go out of bounds
}
// Remaining stones after taking X piles
int opponentScore = helper(i + X, max(M, X), piles, dp, suffixSum);
// Maximum stones Alice can get if she takes X piles
maxStones = max(maxStones, suffixSum[i] - opponentScore);
}
// Store and return the result for this state
dp[i][M] = maxStones;
return dp[i][M];
}
public:
int stoneGameII(vector<int>& piles) {
int n = piles.size();
// dp array to store the results
vector<vector<int>> dp(n, vector<int>(n + 1, -1));
// suffixSum to quickly compute the sum of remaining piles
vector<int> suffixSum(n, 0);
// Calculate the suffix sum
suffixSum[n - 1] = piles[n - 1];
for (int i = n - 2; i >= 0; --i) {
suffixSum[i] = suffixSum[i + 1] + piles[i];
}
// Call the recursive helper function
return helper(0, 1, piles, dp, suffixSum);
}
};